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still a need for work on the determination of stellerator
equilibria with islands and the comparison of results fromA particular configuration of the LHD stellarator with an unusually

flat pressure profile has been chosen to be a test case for comparison different codes that can treat this problem.
of the MHD stability property predictions of different three-dimen- The situation concerning codes for stability studies is
sional and averaged codes for the purpose of code comparison and not as complete. It is not obvious at first glance that there
validation. In particular, two relatively localized instabilities, the

is a stability problem since at least some of these codesfastest growing modes with toroidal mode numbers n 5 2 and
determine the equilibrium by finding the minimum poten-n 5 3, were studied using several different codes, with the good

agreement that has been found providing justification for the use tial energy of the system. Such equilibria should be stable
of any of them for equilibria of the type considered. Q 1996 Aca- by definition unless the chosen minimization fails to lead to
demic Press, Inc. the lowest energy state. In actual practice, most equilibrium

configurations are prescribed to have periodic behavior
over the magnetic field period associated with the geomet-I. INTRODUCTION
ric distortion of the configuration from axisymmetry or of
the helical coils. Thus, the equilibrium should be stableMHD equilibrium and stability properties of toroidal
with respect to any perturbation that does not destroyconfigurations are important for the design, study, and
this helical periodicity. For this reason, stability is usuallyutilization of fusion devices. Many codes have been devel-
thought of as the question of whether relaxation of thisoped and much work has been done for the study of these
periodicity constraint can lead to a lower energy state.properties in axisymmetric tokamak devices. The problem

Considerable work has been done on the problem ofis not as simple in stellarators, where the three-dimensional
stellarator stability. Since a typical stellarator has little oreffects impose much more severe difficulties. Nevertheless,
no net current, one should expect that localized expres-much progress has been made.
sions, the Mercier criterion DI , 0 for ideal modes, theConsiderable effort has been expended in the develop-
analogous DR , 0 criterion for resistive modes [21], andment of analytic and computational tools for the determi-
ballooning mode considerations [22] would provide suffi-nation of three-dimensional equilibria. Two basic ap-
cient guidance. These functions can be obtained by inte-proaches have been employed: The early work utilized
grating along the magnetic field lines and can thus be deter-two-dimensional formulations which were obtained by us-
mined from the equilibrium code results. Comparison ofing a ‘‘stellarator expansion’’ [1–5] or an averaging tech-
resistive interchange mode criteria and ballooning instabil-nique [6–8]. These codes have been employed in the design
ities has been done for the W7-AS stellarator, which hasand interpretation of experiments and are still being used.
many of the features of a helias [23] configuration, and theMore recently, several fully three-dimensional codes have
TJ-II heliac [24]. This agreement can be understood bybeen developed, using energy minimization schemes [9–
the fact that the resistive criterion differs from the Mercier15], as well as direct integration along the magnetic field
one primarily through the elimination of shear stabilizationlines [16, 17]. Much effort has been expended to compare
and that the plasma current in high-b equilibria tends tothe predictions of these codes for configurations where
reduce the local shear in regions of unfavorable curvaturemagnetic islands do not pose a problem and the results

have been very favorable [3, 4, 10, 11, 18–20]. There is so that ballooning modes can grow even when the Mercier
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criterion is favorable [23–27]. Since these studies only pro- of periods. Thus, they should not be expected to work well
for heliacs like TJ-II (Madrid) and H-1 (Canberra), or forvide information about the forces local to a rational sur-

face, it is useful to supplement them with studies of a more the W7-AS and W7-X devices at Garching. On the other
hand, it is difficult to justify extensive work on configura-global character. This is being done, and some comparison

of local and global mode stability criteria has already been tions like HELIOTRON E which has 19 field periods. We
therefore chose our basic equilibrium to be the 10-fieldreported [28].

The treatment of more global modes is usually done by period LHD stellarator [51] that is being constructed at
the National Institute for Fusion Science at Nagoya. Sinceenergy minimization techniques, and both two-dimen-

sional and three-dimensional formulations have been con- it has been designed to have favorable confinement proper-
ties, a modification of it posed a difficult but not insur-structed. The first two-dimensional code of this type, STEP

[29], was based on the stellarator expansion. It has been mountable problem for all of the codes.
The input for most of the stability codes can be generatedmodified into a new improved code KSTEP [30–32]. Sev-

eral other codes [11, 33–36] are also based on this expan- by the VMEC equilibrium code. Some of the stability codes
require input from their own equilibrium solvers, whichsion. Other two-dimensional stability codes [7, 8, 37, 38]

for three-dimensional configurations have been obtained further complicates the comparison. They may have minor
differences in the equilibrium properties, such as the exactwith various averaging procedures. Initial value codes [39–

41], in which the evolution of a system with the initial shape of i-(c), which modify the modes and thus complicate
the comparison. The differences in the formulations of theconfiguration having a small perturbation from equilibrium

is followed, can be used to study the linear and nonlinear various models also makes the presentation of the results
difficult. A major problem is that the definition of b0, thestability behavior. Indeed these codes can be used to con-

struct equilibrium configurations by introducing a proper ratio of the plasma pressure to the magnetic pressure at
the magnetic axis, is not the same in the different codescombination of resistivity and viscosity. More recently,

some fully three-dimensional stability codes [42–46] have because they employed different values of B in the defini-
tion. A second problem is that the codes do not all usebeen created to determine the linear eigenfunctions and

eigenvalues of a Lagrangian minimization associated with the same function to label the surface variable. A third is
that the kinetic energy normalization used in defining thesmall perturbations from equilibrium. A technique has also

been constructed that makes it possible to examine the sta- eigenvalue L which is associated with the mode growth
rate is also chosen differently. This makes it difficult tobility properties of an equilibrium that is calculated by the

BETA code [12] by carrying out a second series of minimiza- get exact comparisons. It was difficult to use exactly the
same pressure distributions in carrying through the studiestions with the imposition of additional constraints.

There has been some effort to compare the results of at the various laboratories. Thus, we have to compare
results for somewhat different cases. We studied two robustthese codes in order to provide an understanding of how

much confidence one could have in their predictions. Com- instabilities, one with a primarily n 5 2 toroidal mode
number and the other with n 5 3. The dominant poloidalparisons of the predictions of the stability properties of

the ATF stellarator using the STEP [29] and FAR [35] mode number for the n 5 2 mode was m 5 3 with the
mode localized near where i- 5 Sd for values of b0 up tocodes showed very good agreement [11]. In the same spirit,

a comparison of the stability predictions of the STEP code, about 7%. Above this value the m 5 4 component becomes
dominant. There was considerable difference in the unsta-the helically invariant HERA code [47], and the BETA

code [12] for a WENDELSTEIN VII-A model showed ble n 5 3 modes for the different pressure distributions.
The m 5 4 mode is dominant for the case where p 5 pI,good agreement [48]. Study of this same case with the

TERPSICHORE code [42] also gave a favorable compari- whereas the m 5 5 mode is most important when p 5 pIII.
Other more slowly growing modes were also observed.son [49]. Good agreement between the TERPSICHORE

and CAS3D codes has been obtained in calculations of We have used the KSTEP code [30] as our basis for the
comparison of the different codes because of convenience.the global stability properties of a series of equilibria rang-

ing from an l 5 2 conventional stellarator to a W7-X con- This code comparison program originated at the Kyoto
University Plasma Physics Laboratory and most of thefiguration [28, 50]. Although these different studies have

been encouraging, it seems useful to carry out more com- work in compiling the results was done there. Since it was
not possible to get all of the different codes to study exactlyparison work in order to provide further validation of the

models and to extend our understanding of the advantages the same cases, it seemed to be worthwhile to exercise the
KSTEP code, which has had significant use there, for all ofand limitations of the different codes.

It is difficult to find configurations where all of the codes the different pressure distributions to establish a common
basis for the comparisons. We recognize that the resultsare easy to use. The two-dimensional models are based on

the approximation that the rotational transform per helical from this code are not necessarily better than, or even as
good as, those from other codes.field period is small, so that there must be a large number
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TABLE IWe describe our LHD configuration in the next section.
We then give short sections on the results from the different Shape of the Plasma Boundary for an LHD Equilibrium with a
codes. We make a few comments about the comparison 15-cm Inward Shift
in the final section.

m n R Z

II. LHD EQUILIBRIUM CONFIGURATION 0 23 27.9800E-04 8.4445E-04
0 22 4.1327E-03 23.0926E-04

The LHD stellarator [51] has a major radius R0 5 0 21 5.1337E-04 21.0588E-02
0 0 3.7447E-00 0.0000E-003.9 m, a set of l 5 2, M 5 10 helical coils with winding
1 23 2.0726E-05 5.0860E-06laws u 5 (l/M)f 1 a sin(l/M)f and u 5 (l/M)f 1 a sin(l/
1 22 6.2691E-04 26.4388E-04M)f 1 f, where the helical modulation is a 5 0.1, and six
1 21 23.3552E-03 23.3914E-03

poloidal field coils that can provide dipole and quadrapole 1 0 6.0354E-01 26.0471E-01
fields to shift and distort the plasma column. For the pur- 1 1 21.8553E-01 21.8557E-01

1 2 3.7961E-04 28.9118E-04pose of this comparison, we adjust the currents in these
1 3 23.5841E-04 23.7405E-04poloidal field coils to shift the vacuum field magnetic axis
2 23 24.7804E-05 3.7281E-05inward 15 cm from its nominal center. This is close to
2 22 21.2175E-03 1.3435E-03

the standard configuration that the National Institute for 2 21 2.4161E-03 23.7336E-03
Fusion Science intends to use for its basic operation and 2 0 22.9558E-03 6.8692E-03

2 1 24.9662E-03 21.2225E-02has an equilibrium configuration in which magnetic islands
2 2 3.2055E-03 4.4494E-03and ergodic regions are sufficiently small to pose no
2 3 3.1796E-04 29.1183E-05problem.
3 23 26.6504E-06 2.6090E-05

We specify the plasma boundary to be 3 22 23.0066E-05 27.4684E-05
3 21 1.0442E-03 28.3010E-04
3 0 2.5582E-03 3.1130E-03R 5 O

m,n
Rm,n cos(mu 2 nMf),

3 1 9.8731E-05 21.6454E-03
3 2 2.6068E-03 2.6006E-03

Z 5 O
m,n

Zm,n sin(mu 2 nMf), 3 3 9.0982E-05 7.3865E-05

with the coefficients Rm,n and Zm,n given in Table I. In
with B0 the magnitude of the vacuum field at the majoractual operation one would expect to see a change in the
radius R0, which is not changed as p0 is increased, to mea-shape and position of the boundary surface as the pressure
sure the pressure in the system.is increased. This boundary modification is really an equi-

We have examined this equilibrium with the KSTEPlibrium problem and should not be introduced into this
code [30] and found it to be almost marginally stable evenwork since it would only complicate the stability code com-
at relatively high values of b0 [53]. The growth rate thatparison. Furthermore, studies of LHD equilibria which
is calculated for these low-n modes is so small (the eigen-are obtained with the VMEC code using a free boundary
values L 5 g2[rR2

0/B2
0] p 1025) that one should not expectcalculation with different prescriptions of the plasma–

to see an instability. This good physical behavior shouldvacuum interface show that the plasma shift and distortion
have been expected since the LHD design was made forimproves the MHD stability properties, making the con-
operation at relatively high values of b. However, the veryfiguration even less useful for a code comparison [52].
small growth rates make the configuration unsuitable forThus, we keep this same boundary specification for de-
a comparison study.termining the equilibria as we change the pressure.

On the other hand, relatively strong instabilities whichFor a typical stellarator application it is usual to prescribe
are localized near an i- 5 Sd, Df, or Dg resonant surface can bethe plasma pressure to be a parabolic function of the mag-
found for a more H-mode-like pressure distribution withnetic poloidal flux,

p 5 pI(c) ; p0(1 2 c 2)2, (2)
p 5 p0(1 2 c)2, (1)

again with c a normalized poloidal flux. Therefore, we
with c a normalized flux, and to have no net toroidal chose this distribution for some of the studies. We used
current on the magnetic surfaces. In most of the studies,
we use the value of b at the axis, p 5 pII(ĉ) ; p0(1 2 ĉ 2)2 (3)

b0 5 2p0/B2
0, with ĉ the toroidal flux for some other ones. Since some
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We considered two types of boundary conditions for
the instability. Most of the work was directed at ‘‘fixed
boundary’’ modes where the components of the displace-
ment vector and the perturbed field normal to a magnetic
surface vanish at the plasma boundary. In a few cases we
also looked at ‘‘free boundary’’ modes where the normal
component of the perturbed magnetic field is continuous
at the plasma surface and goes to zero at an outer wall or
as we get far from the plasma.

III. THE KSTEP CODE

The KSTEP code is a straightforward introduction of
the stellarator expansion [1] into the formalism of the
PEST [54] tokamak stability code. It works on a two-

FIG. 1. p(c) as a function of the normalized poloidal flux for the dimensional equilibrium which is obtained by averaging
different pressure distributions with b0 5 4%; pI corresponds to Eq. (2),

the results of a VMEC calculation [14] over the toroidalpII to Eq. (3), and pIII to Eq. (4).
angle f to obtain averaged values of the contributions of
the nonaxially symmetric fields to the rotational transform
and the magnetic field line curvature. Although higher

of the codes work better with a pressure distribution with order terms in the inverse aspect ratio are incorporated in
p9(0) ? 0, we have also considered a case with the model and the code results have agreed well with other

calculations, application of the code can only be justified
rigorously in the large aspect ratio limit.p 5 pIII(ĉ) ;

p0

8 S V9

V9(0)D22

[5(1 2 ĉ 2)2 1 3(1 2 ĉ)] (4)
The assumption of a large aspect ratio leads to the neces-

sity of using the component of the displacement vector
perpendicular to B (which is in the =f direction in thiswith V(ĉ) the volume enclosed by the surface ĉ. The main
order) to make j divergence free in the lowest order fordifference between these flatter pressure profiles and the
an instability to exist. Then we can setoriginal parabolic one is that the region of large pressure

gradient is shifted outward, into a region where the mag-
netic field line curvature is strongly unfavorable. j' 5

R2

R2
0

=f 3 =h 1 ? ? ?. (5)
The dependences of the pressure and the rotational

transform on a normalized poloidal flux c are shown for
This eliminates the fast magnetosonic waves from the prob-systems with these three pressure distributions with b0 5
lem, and our ability to adjust the component of j parallel4% in Figs. 1 and 2, respectively. It can be seen that the
to B can be used to remove the sound waves. Furtherdifferent models have strong similarities.
minimization determines the higher order components of
j and leads to a Lagrangian containing only the shear
Alfvén waves, the effects of current along B, and a plasma
expansion term:

L 5 g2 E dt
r

R2 u=hu2 2 E dt HuQ'u2

(6)

1
R0B0 J ? B

R2B2 Q' ? =h* 1 j' ? =pj*' ? =VJ,

with

Q' 5 =f 3 =[(R0B0=f 1 =f 3 =c) ? =h]

and

FIG. 2. The rotational transform i-(c) as a function of the normalized V 5
N
2f

E2f/N

0
df

R2

R2
0
S1 1

uBd(R, f, Z)u2

B2
0

D. (7)
poloidal flux for the different pressure distributions with b0 5 4%.
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TABLE II

Instability Eigenvalues for the Fastest Growing ‘‘Fixed Boundary’’ Mode with Toroidal Mode Number n 5 2 in an LHD Configuration
with the Outer Boundary Given by the Parameters of Table I and the Pressure Distribution of Eq. (2), p 5 p0(1 2 c 2)2, with c the
Poloidal Flux

b0 KSTEP TWIST RESORM CHAFAR

3.00% 28.55 3 1024 28.168 3 1024 23.814 3 1025

3.24% 28.8 3 1024

4.00% 24.80 3 1023 24.83 3 1023 22.813 3 1024

4.32% 24.57 3 1023

5.00% 29.76 3 1023 21.016 3 1022 26.968 3 1024

5.44% 29.33 3 1023

6.00% 21.344 3 1022 21.418 3 1022 21.157 3 1023

6.60% 21.30 3 1022

7.00% 21.479 3 1022 21.549 3 1022 21.506 3 1023

7.81% 21.38 3 1022

8.00% 21.350 3 1022 21.357 3 1022 21.460 3 1023

8.75% 21.24 3 1022

9.00% 21.067 3 1022 21.036 3 1022 21.022 3 1023

10.0% 27.84 3 1023 20.780 3 1022 26.469 3 1024

11.0% 26.03 3 1023 24.899 3 1024

12.0% 25.61 3 1023 25.621 3 1024

13.0% 26.04 3 1023 27.560 3 1024

14.0% 27.89 3 1023 21.146 3 1023

15.0% 21.544 3 1022 21.763 3 1023

This is solved by using a Fourier series decomposition in modes is changed have shown little variation in earlier
studies [55], so modification of the range of poloidal modesu and f and a simple finite-element discretization in c.

The weakness of the model is that modes with different is of little concern. On the other hand, the results are
sensitive to the number of surfaces that are considereddominant toroidal mode numbers n are decoupled (the

effect of the helical field periodicity is correctly introduced when the eigenfunction is extremely localized at the reso-
nant surface and we have not carried through a properinto the averaging process by including the non-axially

symmetric components of the displacement vector into the study.
The eigenvalues for the ‘‘fixed boundary’’ n 5 2 modecalculation analytically), the effect of finite compressibility

is eliminated, and the lowest-order displacement vector
has no component along =f. Since most stellarators have a
reasonably large aspect ratio, these restrictions are usually
well justified by the physics and these limitations rarely
impose a problem. A major difficulty is that we do the
averaging over the toroidal angle in a cylindrical coordinate
system so that the magnetic axis should be nearly planar.
This makes the code inapplicable for the study of heliac
or helias devices in which the equilibrium contains a large
l 5 1 helical component. We typically run the stability
problem with a relatively low toroidal mode number, n 5 1
or 3 for example, choose a range of poloidal mode numbers
such as 27 # m # 14, and work with k 5 769 or more
magnetic surfaces.

The fastest-growing ‘‘fixed boundary’’ n 5 2 mode for
an equilibrium with the pressure given by Eq. (2) has an
eigenvalue L 5 g2[rR2

0/B2
0] which varies with b0 as shown

FIG. 3. The eigenvalues L as functions of b0 for an n 5 2 ‘‘fixedin the first column of Table II and in Fig. 3. The Fourier
boundary’’ mode in the LHD equilibrium with p given by Eq. (2) as

components of the minimizing displacement normal to the calculated by the KSTEP code, the TWIST code, the RESORM code,
magnetic surfaces are shown in Fig. 4a for the b0 5 4% and the CHAFAR code. The eigenvalues from the CHAFAR have been

multiplied by a factor of 10.case. Convergence studies in which the number of poloidal
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FIG. 4. Fourier components of the minimizing displacement vector normal to the magnetic surfaces, j ? =c, as functions of the normalized
poloidal flux c for the n 5 2 ‘‘fixed boundary’’ mode in the LHD equilibrium, where p is given by Eq. (2) with b0 P 4%: (a) KSTEP; (b) TWIST;
(c) RESORM, and (d) CHAFAR.

in the configuration with p given by Eq. (3) are in the first equilibrium and stability. It works in conjunction with the
three-dimensional and two-dimensional equilibrium codescolumn of Table III and in Fig. 5, and the eigenfunction

for the b0 5 4% case is in Fig. 6a. Relaxation to a ‘‘free POLAR-3D [57] and POLAR-2D [58]. The key point of
this variational formalism can be briefly described as fol-boundary’’ condition where the normal component of the

perturbed magnetic field is forced to vanish at r(c) 5 1.3ap, lows: We start with a prescribed vacuum field or finite-
b three-dimensional equilibrium, a so-called backgroundfar from the plasma surface, leads to the eigenvalues in

the third column of Table III, which are shown in Fig. 7. configuration which can be obtained either analytically or
numerically. Then a formal functional with two-dimen-The eigenfunction for a case with b0 5 7% is shown in Fig.

8a. It is worth mentioning that there is very little difference sional coefficients which approximates the plasma poten-
tial energy,between the ‘‘fixed’’ and ‘‘free’’ boundary eigenvalues

when b0 5 4%.
Results for the ‘‘fixed boundary’’ n 5 3 mode with the E

VP
FB2

2
1

p
c 2 1G d 3r,pressure distribution of Eq. (2) are in the first column of

Table IV and in Figs. 9 and 10a. Similar results for the
n 5 3 mode in the system with p given by Eq. (3) are in for configurations close to the background one can easily
the first column of Table V and in Figs. 11 and 12a. be constructed. First and second variations of this func-

tional consistently lead to approximate MHD equilibriumIV. THE TWIST CODE
and stability models. This procedure is done in such a way
that it gives exact models for plasmas with planar, axial, orThe TWIST code is based on a relatively new approach

[37, 56] for constructing approximate models for MHD helical symmetry. Moreover, it gives an exact equilibrium
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TABLE III

Instability Eigenvalues for the Fastest Growing Mode with Toroidal Mode Number n 5 2 in an LHD Configuration with the Outer
Boundary Given by the Parameters of Table I and the Pressure Distribution of Eq. (3), p 5 p0(1 2 ĉ 2)2, with ĉ the Toroidal Flux

Fixed boundary Free boundary

b0 KSTEP TERPSICHORE KSTEP TERPSICHORE

2% 29.04 3 1025 21.11 3 1024

2.07% 23.00 3 1026 29.00 3 1026

2.44% 28.80 3 1025 21.44 3 1024

2.97% 24.30 3 1024 27.26 3 1024

3% 27.47 3 1024 29.20 3 1024

3.86% 21.39 3 1023 22.57 3 1023

4% 22.36 3 1023 23.00 3 1023

4.72% 22.19 3 1023 24.70 3 1023

5% 23.37 3 1023 24.41 3 1023

5.55% 22.44 3 1023 27.06 3 1023

6% 23.16 3 1023 24.18 3 1023

6.36% 22.01 3 1023 29.97 3 1023

7% 22.59 3 1023 27.06 3 1023

7.14% 21.60 3 1023 21.29 3 1022

7.89% 22.25 3 1023 21.50 3 1022

8% 23.11 3 1023 21.87 3 1022

8.62% 29.80 3 1024 21.59 3 1022

9% 21.41 3 1023 24.13 3 1022

10% 23.43 3 1023

description for the background plasma and stability criteria construction of two-dimensional necessary and sufficient
stability criteria as well as extension to a fully three-dimen-for modes with toroidal mode numbers n which are decou-

pled from the equilibrium quantities. The coefficients of sional model would be straightforward.
The approach gives in a natural way a nontraditionalthese two-dimensional approximated functionals are deter-

mined by only the metric tensor of the straight magnetic representation of the potential energy associated with
small perturbations,field line coordinate system of the background configura-

tion and the freedom in its choice can be used to get the
best (from one or another point of view) approximation.

W(ds, dl) 5 As E
VP

hQ2 1 ds(J ? =dl) 2 dl(J ? =ds)One of the guiding elements in this formalism is that

1 (J ? (= 3 D) 3 ê)(ds)2 (8)

1 (=p ? ê)= ? (ê(ds)2)j d 3r

with

j 5 2ds
D 3 B

B2 2 dl
B 3 =s

B2 2 e
B
B2 , (9)

where

Q 5 =(j 3 B) 5 2= 3 (dl=s 2 dsD),

D 5 F9=u 1 C9=z, B 5 =s 3 D,

ê 5 =s/u=su2,

FIG. 5. The eigenvalues L as functions of b0 for an n 5 2 ‘‘fixed ds 5 2(j ? =s),
boundary’’ mode in the LHD equilibrium with p given by Eq. (3) as
calculated by the KSTEP and TERPSICHORE codes. dl 5 2(j ? D),
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FIG. 8. Fourier components of the minimizing displacement vectorFIG. 6. Fourier components of the minimizing displacement vector
normal to the magnetic surfaces j ? =c as functions of the normalized normal to the magnetic surfaces j ? =c as a function of the normalized

poloidal flux c for the n 5 2 ‘‘free boundary’’ mode in the LHD equilib-poloidal flux c for the n 5 2 ‘‘fixed boundary’’ mode in the LHD equilib-
rium, where p is given by Eq. (3) with b0 P 4%: (a) KSTEP; (b) TERPSI- rium, where p is given by Eq. (3) with b0 P 7%: (a) KSTEP; (b) TERPSI-

CHORE.CHORE.

and (s, u, z) is an arbitrary straight magnetic field line
coordinate system for the configuration that is being deter-
mined. We have dropped the plasma compression term
cp(= ? j)2, thus eliminating slow magnetosonic waves, and
chosen e 5 0 in the kinetic energy. Therefore we actually
overestimate the linear growth rate of the instabilities.

The attractive feature of this functional W representa-
tion is that in a straight magnetic field line coordinate
system it contains as coefficients only seven functions re-
lated to the metric tensor; gi,j /Ïg appears in the first term
and Ïg in the others. This is convenient for spectral meth-
ods and our experience has shown that it can improve
convergence properties.

In the two-dimensional stability model of the TWIST
code we take into account only the n 5 0 harmonics of
the metric tensor. It is clear that, for a single mode withFIG. 7. The eigenvalues L as functions of b0 for an n 5 2 ‘‘free
j 5 j(s, u)einz which is decoupled from the equilibrium,boundary’’ mode in the LHD equilibrium with p given by Eq. (3) as

calculated by the KSTEP and TERPSICHORE codes. this gives an exact stability criterion. In fact, we could and



STELLARATOR STABILITY CODE COMPARISON 51

TABLE IV

Instability Eigenvalues for the Fastest Growing ‘‘Fixed Boundary’’
Mode with Toroidal Mode Number n 5 3 in an LHD Configuration
with the Outer Boundary Given by the Parameters of Table I and
the Pressure Distribution of Eq. (2), p 5 p0(1 2 c 2)2, with c the
Poloidal Flux

b0 KSTEP TWIST

2.00% 21.54 3 1026

3.00% 22.01 3 1023

3.24% 21.99 3 1023

4.00% 29.11 3 1023

4.32% 27.81 3 1023

5.00% 21.68 3 1022

5.44% 21.37 3 1022

6.00% 22.14 3 1022

6.60% 22.20 3 1022 21.66 3 1022

7.00% 22.15 3 1022

7.81% 21.56 3 1022

8.00% 21.84 3 1022

8.75% 21.87 3 1022

9.00% 21.49 3 1022

10.00% 21.16 3 1022

did implement this criterion by deriving the metric tensor
components approximately, first computing the back-
ground configuration and then increasing b in the frame
of the two-dimensional approximate equilibrium model.

It is useful to note that the results from the TWIST code
show the three-dimensional character of the perturbed so-

FIG. 10. Fourier components of the minimizing displacement vector
lution directly since the full three-dimensional geometry normal to the magnetic surfaces j ? =c as functions of the normalized
is built into the metric. Similar representations can be poloidal flux c for the n 5 3 ‘‘fixed boundary’’ mode in the LHD equilib-

rium, where p is given by Eq. (2) with b0 5 6.6%: (a) KSTEP; (b) TWIST.obtained from the other two-dimensional codes since we
know the minimizing displacement and can evaluate

C(r 1 j) 5 C0(r 1 j) 1 Cd (r 1 j)

5 C0(r) 1 j ? =C0(r) 1 Cd (r).

Fourier decomposition is used in the poloidal and toroi-
dal directions and a special finite-difference scheme [59]
(close to the hybrid finite elements of the ERATO code
[60]) is employed in the radial direction in the TWIST
code. Calculation can be done both for internal modes and
for external ones where the vacuum region is treated as if
it were a zero-current pressureless plasma. The code has
been tested extensively for axisymmetric equilibrium con-
figurations and has shown good convergence properties.
This study is the first major comparison with other stellara-
tor stability codes.

Application of this code was made to the LHD configu-
ration with the pressure given by Eq. (2). The equilibriumFIG. 9. The eigenvalues L as functions of b0 for an n 5 3 ‘‘fixed
was calculated with the POLAR-2D code [58] on a 64 3boundary’’ mode in the LHD equilibrium with p given by Eq. (2) as

calculated by the KSTEP and the TWIST codes. 64 mesh using an interpolation of the straight magnetic
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TABLE V should improve the comparison results. The convergence
studies showed that nine poloidal harmonics and up to 90Instability Eigenvalues for the Fastest Growing ‘‘Fixed Boundary’’
radial mesh points are sufficient for calculating with anMode with Toroidal Mode Number n 5 3 in an LHD Configuration
accuracy of about 1%. The eigenvalues associated with thewith the Outer Boundary Given by the Parameters of Table I and the

Pressure Distribution of Eq. (4), p 5 (p0/8)(V9/V9(0))[5(1 2 ĉ 2)2 1 fastest growing n 5 2 instability are tabulated in the second
3(1 2 ĉ)], with ĉ the Toroidal Flux and V(ĉ) the Volume column of Table II and shown in Fig. 3 and the eigenfunc-

tion for the b0 5 4.2% case in Fig. 4b. The results for the
b0 KSTEP RESORM CAS3D n 5 3 instability with this pressure distribution are given

in the second column of Table IV and in Figs. 9 and 10b.1.96% 22.01 3 1025

The free boundary case is approached in this code by1.97% 24.51 3 1025 22.17 3 1025

2.12% 27.29 3 1025 considering an outer boundary a factor of 4 larger than
2.21% 27.55 3 1025 the plasma–vacuum interface and in general has a much
2.30% 21.80 3 1024

larger growth rate. For an n 5 1 mode the value of L
2.43% 23.43 3 1024 22.55 3 1024

increases from 8.73 3 1025 to 1.727 3 1022 for the b0 52.48% 23.53 3 1024

6.6% case.2.65% 25.97 3 1024

2.82% 29.11 3 1024

2.88% 21.08 3 1023 28.62 3 1024

V. THE RESORM CODE
3.31% 21.74 3 1023

3.66% 23.26 3 1023

The RESORM code [36] is a two-dimensional initial3.74% 23.59 3 1023 22.88 3 1023

value code which is based on the ‘‘stellarator expansion.’’
The basic equations of the code are the linearized incom-
pressible reduced MHD equations,

field line metric tensor of the vacuum configuration as
input. This vacuum field background configuration had

­A
­t

5 2SR
R0
D2

B ? =F, (10)been computed with the POLAR-3D code [57] on a rather
rough mesh—24 3 24 3 24. This procedure was chosen
because of restrictions in computer resources for the actual

r
­D*F

­t
5 2B ? =D*A 1 =A 3 =Jfeq ? =fthree-dimensional equilibrium calculations. On the other

hand, the results that were obtained allow us to see the
1 R2

0=V 3 =p ? =f, (11)accuracy of the approximate models that are obtained even
when the background three-dimensional equilibrium con-
figuration is far from the finite-b one. Using a background ­p

­t
5 SR

R0
D2

=F 3 =peq ? =f, (12)
configuration that is closer to the desired one and taking
into account more than one of the largest toroidal compo-

for the three scalar functions A, the poloidal magnetic fluxnents in the Fourier representation of the metric tensor
divided by 2f, F, the velocity stream function, and p, the
plasma pressure. Here the magnetic differential operator is

B ? = 5
R0B0

R2

­

­f
2 =Ceq 3 =f ? =,

and Ceq, Jfeq, and peq denote the equilibrium poloidal flux,
the toroidal component of the equilibrium current density,
and the equilibrium pressure, respectively. The averaged
curvature of the magnetic field line V is given by Eq. (7)
and the operator D* is defined by

D* 5 R2 =' ? S='

R2D, =' 5 = 2 =f
­

­f
.

The relation between the stream function and the per-FIG. 11. The eigenvalues L as functions of b0 for an n 5 3 ‘‘fixed
turbed plasma velocity perpendicular to the magnetic fieldboundary’’ mode in the LHD equilibrium with p given by Eq. (4) as

calculated by the KSTEP code, the RESORM code, and the CAS3D code. v' is given by
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FIG. 12. Fourier components of the minimizing displacement vector normal to the magnetic surfaces j ? =c as functions of the normalized
poloidal flux c for the n 5 3 ‘‘fixed boundary’’ mode in an LHD equilibrium, where p is given by Eq. (4) with b0 P 4%: (a) KSTEP; (b) RESORM;
(c) CAS3D.

VI. THE CHAFAR CODE
v' 5 SR

R0
D2

=F 3 =f.
The CHAFAR code [38] is also an initial-value code

based on the ‘‘stellarator expansion.’’ The major innova-
These three-field equations differ from the reduced tion in this code is the application of the averaging in a

MHD equations for stellarators that were derived by straight magnetic field line (Boozer) coordinate system
Strauss [34], by keeping higher order toroidal corrections associated with the exact three-dimensional finite-b equi-
through the factor R/R0. librium. Thus the code can be used for treatment of systems

Since they employ the same physics model and approxi- like heliacs and helias in which the magnetic axis is strongly
mations that the KSTEP code does, the RESORM code nonplanar. It utilizes the standard low-b, small nonaxisym-
can examine the stability of 3D equilibria by utilizing the metric expansion and introduces a stream function for the
interface code between the VMEC code [14] and the perturbed velocity to eliminate the fast and slow mag-
KSTEP stability code [30]. The normalization of the netosonic waves. Although the derivation is based on the
growth rate of the perturbation is also the same as the one standard ordering of the stellarator expansion, the geomet-
in the KSTEP code. rical terms are taken exactly from the equilibrium. In par-

The eigenvalues for the n 5 2 case, where p is given by ticular, the displacement vector component orthogonal to
Eq. (2), are tabulated in the third column of Table II and B is
shown in Figs. 3 and 4b. The eigenvalues and eigenfunc-
tions for the n 5 3 case, where p is given by Eq. (4), are

j' 5
R0

D
=f 3 =h (13)

in the second column of Table V and in Figs. 11 and 12b.
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and the field line curvature term is given by ­V/­r, where where u and f are the poloidal and toroidal angles in
Boozer coordinates, s is an arbitrary magnetic surface la-
bel, Ïg is the Jacobian, J(s) is the toroidal current inside

V 5
N
2f

E2f/N

0

R0

D
df, (14)

the surface s, and F is the toroidal flux. Since the kinetic
energy term in Eq. (15) does not affect the value of b0 at

r 5 (2ĉ/B0)1/2 with ĉ the toroidal flux divided by 2f, D which the configuration becomes unstable, it was simplified
is the inverse Jacobian of the transformation to Boozer as in the PEST-2 tokamak stability code formulation [61]
coordinates [38], and f is the toroidal angle-like Boozer for computational efficiency. The component e is chosen
coordinate. The expressions (13) and (14) correspond to to make = ? j 5 0 to remove the term associated with
the expressions (5) and (7) in the stellarator expansion plasma compressibility (the slow magnetosonic wave). The
formulation of the KSTEP code. The differences between components j s and h are Fourier decomposed in u and f,
these expressions lead to a change in the effective curvature and a finite hybrid element radial discretization scheme is
[38]. The model has been implemented into the initial value applied. A careful choice of the basis functions that are
incompressible MHD code FAR [35] which utilizes a fully used [62] has improved the convergence properties of the
implicit scheme that allows a very fast determination of code over those observed in the original ERATO code
the linear growth rate. The perturbed quantities are repre- [60]. The code has been well optimized so that it is fast;
sented as Fourier series in u and f, and a finite difference an earlier version has won a competition sponsored by
scheme is used for the variable r. Cray Research, Inc. for well constructed codes.

We have carried through the calculation for the LHD The TERPSICHORE and CAS3D codes have the dis-
configuration with the pressure given by Eq. (2), looking tinct advantage over two-dimensional codes that the effect
at the n 5 2 mode and using seven Fourier components of toroidal mode coupling can be studied. This introduces
in u. Convergence studies have been carried out in a num- the problem that many modes must be included in the
ber of computational surfaces, going from 200 to 800. The calculation, especially for configurations with a large num-
converged eigenvalues are tabulated in the fourth column ber of helical field periods. This problem is alleviated by
of Table II and plotted in Fig. 3. The eigenvalue L is the observation that only certain toroidal Fourier harmon-
approximately 10 times smaller than those obtained with ics are coupled by the equilibrium properties so that mode
the KSTEP and TWIST codes. This is due to the change families exist, each characterized by a dominant n 5 1,
in the effective curvature which was described above. The n 5 2, etc. component and that the different families can
normal component of the eigenfunction is given in Fig. 4d be studied separately.
for the case where b0 5 4%. We used the pressure distribution of Eq. (3) for this

study. The converged ‘‘fixed boundary’’ eigenvalues for
VII. THE TERPSICHORE CODE the fastest growing n 5 2 mode are given in the second

column of Table III and in Fig. 5. The eigenfunction forThe TERPSICHORE code [42, 44, 49] was constructed
b0 5 4% is in Fig. 6b. The corresponding ‘‘free boundary’’by the group at École Polytechnique Fédérale de Lausanne
eigenvalues and eigenfunctions are given in Table III andin cooperation with members of the Max-Planck-Institut
Figs. 7 and 8b.für Plasmaphysik at Garching. It extremizes the Lagran-

gian associated with the linear behavior of small displace-
VIII. THE CAS3D CODEments from equilibrium,

The CAS3D series of codes [43, 45, 46] was developed
L 5 g2 E dt ruj u2 2 W, (15) at the Max-Planck-Institut für Plasmaphysik at Garching

to study the global MHD stability properties of helias type
W 5

1
2
E

p
dt [uCu2 2 A(j ? =s)2 1 cp(= ? j)2], (16) stellarators. It is a fully three-dimensional code which uti-

lizes a dW formulation to investigate the behavior of small
perturbations from an equilibrium configuration which is

C 5 = 3 (j 3 B) 1
J 3 =s
u=su2

j ? =s, obtained with the VMEC code [14]. The potential energy
is again given by Eq. (16). As in most of the models, it is

A 5 2u=su24 (J 3 =s) ? (B ? =)=s, clear that the last term in Eq. (16), corresponding to slow
magnetosonic waves (plasma compression), is always stabi-with
lizing and does not affect the value of b at which the system
is marginal. The component of j along B can be and is

j 5 Ïgj s =u 3 =f 1 h
B 3 =s

B2 1 S J(s)
B2F9(s)

h 2 eD B, chosen to eliminate this term. In a similar manner, the
component of C along B which is associated with the fast
magnetosonic wave (field compression) is also stabilizing.(17)
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Studies of the contributions from the various terms show distribution, the n 5 2 mode shows a strong nonmonoton-
icity (see Fig. 3). It has a strong m 5 3 component whichthat the minimizing perturbation always makes this term

extremely small. Thus, although the code can be run keep- peaks at b0 P 7% and then falls off. An m 5 4 dominated
mode starts growing as b0 is increased to even higher val-ing these fast magnetosonic modes, it is desirable to deter-

mine the component of j in the B 3 =s direction as a ues. The observation that the n 5 2 mode is the fastest
growing mode in the equilibria with the pI and pII pressurefunction of j ? =s analytically to eliminate this term. This

is easily accomplished since we use Fourier decomposition distributions but is barely unstable for the pIII one shows
the sensitivity of the stability results to the details of thein the poloidal and toroidal directions and finite elements

in the =s direction to represent the perturbations and deriv- equilibrium that is studied.
In the light of the differences between the codes, weatives of the surface components of j with respect to s do

not enter the expression for dW. Since the actual growth were surprised to see how well they agreed. We have pre-
sented the results from the different ones in the aboverates are not important, we use only the j ? =s component

of the perturbation in the kinetic energy term. sections with no attempt to hide any disagreements. In-
deed, the only real disagreement that we saw was that theThe usefulness of treating a limited number of ‘‘mode

families,’’ each characterized by a dominant low-n mode eigenvalues obtained from the CHAFAR code differed
from those of the other codes by a factor of almost 10,number with coupling to higher n modes only through the

helical field effects, was first recognized in the construction which can be attributed to a difference in the expression
for the effective magnetic field line curvature. We couldof the CAS3D code. The effect of coupling between the

different mode families is very small for the LHD configu- have hidden this disagreement by normalizing the eigen-
value to unity at some value of b, say b0 5 4%, but weration that we studied here, but it can be seen.

We have used this code to study the LHD configuration chose not to do so. Since most stability code applications
concern the determination of the critical value of b atwith the pressure distribution given by Eq. (4) for the mode

with n 5 3 and its associated toroidal harmonics. The which instability sets in, and the agreement on this was
quite good, the actual eigenvalue is not really important.eigenvalues are given as functions of b0 in the third column

of Table V and in Fig. 11, and the radial component of All of these tools are capable of treating this LHD stel-
larator model accurately. This is a strong test of the codesthe eigenfunction is given in Fig. 12c for the case where

b0 5 4%. When the n 5 2 toroidal harmonic family is since the standard LHD equilibrium is so close to stable
that a pressure distribution with =p localized to the outerretained, the eigenmode is nearly stable with L 5 26.8 3

1024. This extreme sensitivity of stability to the exact shape region had to be assumed to even find an unstable mode.
It is possible that the agreement between the codes mightof the pressure profile is what made this comparison work

so difficult. not be as good for a configuration with a higher marginal
b-value. Nevertheless, it is reasonable to say that all of
these codes should be useful for treatment of torsatron orIX. DISCUSSION
classical stellarator configurations like Heliotron E, ATF,
CHS, and LHD. Indeed, earlier studies [48] showed thatIt is difficult to carry out a study of this type where the

authors are located in different places and have different the STEP code provided suitable results for configurations
like Wendelstein VII-A which had only five helical fieldlimitations and problems with their codes. For this reason,

we were not able to study exactly the same equilibrium or periods. It should also be remarked that other codes which
were not treated in this study have been compared to someto produce results that have the same basis. Indeed, the

different codes did not use the same kinetic energy normal- of the ones which were exercised here. Thus, the tools that
are available for study of stellarator stability are quite ex-ization or definition of b0 and treated the behavior of the

fast and slow magnetosonic waves in somewhat different tensive.
It is obvious that the different codes are useful for differ-manners. We have been able to carry through the compari-

son of two or more codes for each pressure distribution ent applications. For example, the KSTEP and RESORM
codes cannot be used for heliac and helias type configura-that was used so that some understanding of the output

of each code has been obtained. We should be pleased to tions where the magnetic axis is strongly nonplanar. On
the other hand, these codes are particularly useful for treat-see that all of the codes found the same relatively localized

n 5 2 and n 5 3 modes near where they should be expected ment of configurations like HELIOTRON E, ATF, and
LHD which have many field periods. The TWIST,to be the most unstable modes, with the eigenvalues L

having the same behavior as b0 is changed. The behaviors CHAFAR, TERPSICHORE, and CAS3D codes are bet-
ter adapted for a study of any model, even those withof the displacement vector in the =s direction found by

the different codes are also similar. It is useful to observe a strongly nonplanar magnetic axis, although the small
number of helical field periods in some devices makes thethat the codes show the same change in behavior of the

mode as b0 is increased. For example, with the pI pressure averaging to a 2D model somewhat suspect. It is possible
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3. V. E. Lynch, B. A. Carreras, L. A. Charlton, T. C. Hender, L. Garcia,that the TWIST and CHAFAR codes could be useful for
H. R. Hicks, and J. A. Holmes, J. Comput. Phys. 66, 411 (1986).scoping studies of the global stability properties of heliacs

4. T. C. Hender and B. A. Carreras, Phys. Fluids 27, 2101 (1984).like H-1 and TJ-II. Unfortunately, we did not have the
5. V. D. Pustovitov, V. D. Shafranov, L. E. Zakharov, L. M. Degtyarev,tools available to do validation studies similar to the ones

V. V. Drozdov, S. Yu. Medvedev, Yu. Yu. Poshekhonov, and M. I.
reported here in this paper for such configurations. It was Mikhajlov, in Plasma Physics and Controlled Nuclear Fusion Re-
noted earlier [28, 32, 46, 63] that the behavior of the low-n search, 1982 (International Atomic Energy Agency, Vienna, 1983),

Vol. II, p. 541.modes is usually similar to that of the high-n modes so
that one should expect to see some correspondence be- 6. L. M. Kovrizhnykh and S. V. Shchepetov, Soviet J. Plasma Phys. 6,

533 (1980).tween the eigenvalues and the Mercier criterion, DI, or
7. J. Todoroki, J. Phys. Soc. Japan 56, 128 (1987).resistive interchange criterion, DR. The same conclusion
8. J. Todoroki, J. Phys. Soc. Japan 58, 3979 (1989).tends to be true for ballooning modes, although these
9. R. Chodura and A. Schlüter, J. Comput. Phys. 41, 68 (1981).modes may be especially serious because of the destruction

10. T. C. Hender, B. A. Carreras, L. Garcia, J. A. Rome, and V. E.of local shear by the plasma currents in high-b equilibria
Lynch, J. Comput. Phys. 60, 76 (1985).[23–27]. This differs from tokamak studies where the toroi-

11. T. C. Hender, B. A. Carreras, L. A. Charlton, L. Garcia, H. R. Hicks,dal current provides a strong driving mechanism for global
J. A. Holmes, and V. E. Lynch, Nucl. Fusion 25, 1463 (1985).

modes, making them tend to be the most limiting instabil-
12. F. Bauer, O. Betancourt, and P. Garabedian, Magnetohydrodynamic

ities. Equilibrium and Stability of Stellarators (Springer-Verlag, New
We should emphasize again that our choice of an LHD York, 1984).

model for this comparison study should not be taken to 13. O. Betancourt, Commun. Pure Appl. Math. 41, 551 (1988).
imply that this system will suffer from poor MHD stability 14. S. P. Hirshman, W. I. vanRij, and P. Merkel, Comput. Phys. Commun.
properties. Indeed, in our stability studies we found that 43, 143 (1986).
the standard operating configuration is stable, or extremely 15. M. Taylor, J. Comput. Phys. 110, 407 (1994).
close to stable. We therefore had to adopt an unusually 16. A. Reiman and H. S. Greenside, Comput. Phys. Commun. 43, 157

(1986).flat pressure profile in order to push the large pressure
17. J. Kisslinger and H. Wobig, in Twelfth European Conference ongradient into a region of unfavorable magnetic field line

Controlled Fusion and Plasma Physics, Budapest, 1985, Vol. 9A, Pt.curvature so that an unstable mode could grow. We used
1, p. 453.a ‘‘fixed boundary’’ model for the plasma, in which the

18. G. Rewoldt, J. L. Johnson, and J. A. Holmes, in Sherwood Meeting onshape and position of the plasma–vacuum interface were
Theoretical Aspects of Controlled Fusion Research, Arlington, 1983,

preserved as b0 was increased. We should note again that Paper 1P18.
‘‘free-boundary’’ equilibrium calculations have shown [49] 19. B. A. Carreras, L. A. Charlton, T. C. Hender, H. R. Hicks, J. A.
that finite-b alterations of the plasma surface should im- Holmes, V. E. Lynch, L. Garcia, J. H. Harris, and B. F. Masden,

Phys. Fluids 26, 3569 (1983).prove the system’s stability properties over those of our
20. J. L. Johnson, D. A. Monticello, A. H. Reiman, A. Salas, A. L.model.

Fraguas, and S. P. Hirshman, Comput. Phys. Commun. 77, 1 (1993).
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